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Abstract. We study 2 number of non-uniform specified topologies and show rigorously
that for certain topologies with cut edges, the critical exponent <, is in agreement with
a comjecture given by Gaunt e &/ and that the exponent »: = w, the exponent for
self-avoiding walks. We also find that the scaling relations ~: — 4} and ~: — 43 are
the same as for self-avoiding walks, previously conjectured only for uniform networks.
By assigning an interaction energy to a nearest neighbour contact, we prove that the
collapse transition for these topologies is the same as that for self-avoiding walks.

1. Introduction

The influence of topology on the critical exponent +, of polymer networks with
the self-avoiding constraint has been previously investigated (Gaunt et al 1984b,
Duplantier 1986). The number of configurations, G, of a network with a specified
topology is expected to vary asymptotically as e*V N7:-1, where « is the connective
constant for seif-avoiding walks and NV is the total length. The results of scaling
and renormalization theory for the critical exponent «, (Duplantier 1986, Duplantier
and Saleur 1986) hold for the uniform or ‘pseudo’ uniform network for which the
number of monomers, n in each of the self-avoiding chains is expected to be of
O(n). For the non-uniform case, in which finite chain lengths are allowed, Gaunt
et al (1984b) have conjectured the form -, = v + b — 1 for a network with b cut
edges. (A cut edge of a graph is one which, if deleted, disconnects the graph). The
conjecture jis based on heuristic arguments and bounds and exact enumeration data
for some simple topologies. In this work, we calculate rigorously critical exponents for
a number of simple non-uniform networks given in figure 1. For the networks with
cut edges (figures 1(a)-1(d)), we show that the subdominant exponent -, satisfies
the conjecture -+, = v + b — 1. We also consider the exponent v,, characterizing the
divergence of the mean-square end-to-end distance of a chain within these networks,
and prove that it is equal to v, the self-avoiding walk exponent. Similar results for the
subdominant exponents hold for the half space problem if these topologies have their
initial or both initial and terminal vertices attached to the surface. Consequently, we
find that the scaling relations involving the bulk exponents and surface exponents are
the same as for SAws, previously conjectured only for uniform networks (Duplantier
1989, De’Bell, Lookman and Whittington 1990, De'Bell and Lookman 1993). By
assigning an interaction energy to a nearest neighbour contact, we prove that the
collapse transition for these topologies is the same as that for SAws. For the figure-
eight network (figure 1(e)), we show that the subdominant exponent € is equal to
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Figure L. Examples of simple topologies: (a} ladpole, (b)
dembbell, (c) twin-tailed tadpole, (d) ¢ twin-tailed tadpole,
(e} (e) figure-cight.

, the exponent for polygons and that the collapse transition is the same as that for
polygons.

The study of such networks is also related to the problem of lattice trails which
are random walks on a lattice in which the edges are not allowed to overlap (Malakis
1975). Our results show that for trails in the honeycomb and Lavé lattices, in addition
to the subdominant exponent v (Guttmann 1985a), the exponent v is also the same
as that for saws. For trails in a hypercubic lattice, we show that for any trail with ¢
cycles, which we term a c-trail, v, = v + ¢ and v, = v. These results for c-trails
are analogues of the results 6_ = 8; — ¢ (Soteros and Whittington 1988) and v, = v
(Zhao, Wu and Lookman 1992) for bond c-animals, where @, is the subdominant
exponent and v, is the exponent for the mean-square radius of gyration for the
c-animals; 8, and 1, are the corresponding exponents for bond trees.

In section 2 we consider a pattern theorem due to Kesten (1963) and obtain
a corollary that we will use to investigate the specified topologies in section 3. In
section 4, we discuss trails and e-trails. All of the models considered are embedded
in the d-dimensional hypercubic lattice in which a vertex is 2 point in d-dimensional
Euclidean space with integer coordinates ¢ = (z,, ..., x;). The notations e,
€3, ...,e; will be used for the unit vectors.

2. Pattern theorem

For self-avoiding walks, a pattern P is a prescribed finite step seif-avoiding walk and
is said to occur in a self-avoiding walk W if it is part of W. It is said that P occurs
r times in W if P appears at + distinct steps of W, and the vertices of two copies
of P are disjoint or the terminal vertex of one is the initial vertex of another. P is
called a Kesten pattem if there exists an m-step walk W where P appears more than
twice in W,

Theorem 1 (Kesten 1963). 1If P is any Kesten pattern and ¢, (£, <) is the number of
n-step self-avoiding walks in which P occurs at most en times, then there exists a
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positive number g5 > 0 such that

lim sup — lncn(s(hs) <k (1)

n—o0

where « is the connective constant of self-avoiding walks,
A corollary which we need from the theorem is given as follows:

Corollary 1. Let P be a Kesten pattern. There exists a positive number e, such
that if ¢,, (&g, >) is the number of n-step self-avoiding walks in which the pattern P
appears more than gyn times, then

fm elf0>) _ o 2)

—
n— 00 C'n.

Proof. For any Kesten pattern P, from the theorem, there exist positive numbers
gy > 0, § > 0 and an integer of N () such that for any n > N(§), we have

0 < cp(eg <) < 65O, ®
Since
cﬂ.(EU? >) =1- n(Elh ) (4)
C, ]

n n

By using (1), we obtain

(k=8)n
€ < cn(eﬂ? >) < 1

- > )
Taking limits yields
< lim mm lim SungL (6)
n—0o c, n—o09 Cph

This corollary can also be extended to other problems such as n-step self-avoiding
polygons and n-step self-avoiding walks with certain geometrical constraints, provided
that the connective constant is the same as that for self-avoiding walks.

3. Critical exponents for simple networks

3.1. Critical exponents in the buik

We first consider tadpoles (b = 1). Let ¢, (r) and ¢, (r) be the number of n-step
self-avoiding walks and tadpoles respectively with end-to-end distance r along the
chain. If an edge incident at the branch point of degree 3 is deleted from the loop
of a tadpole, we obtain an (n — 1)-step SAW with end-to-end distance r 4 &, with
| 6y |< 1. Therefore

ta(r) S ey (r+ &) (7)
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Figure 2. Conversion of a self-avoiding walk into a tadpole
by adding a finite number of edges such as, one edge (a),

(@ (k) {© two edges (b) and three edges (c).

tn € Cooye &

For an upper bound to the number of configurations for a tadpole, we note that at
most 3 edges are needed to construct a tadpole from a saw (figure 2). Thus

.

en(T) St (7 4+ 81) + 1 o(r + &) + 1, 3(7 + &) ®
in which -1 6, €1, -1<§; €2 and -1 £ é; < 1. Summing over r yields

Cn < 3tn+3' (10)

From equations (8) and (10}, we have that
.1 1

nhﬂoﬁmtn—nh_{nmﬁmcn_“ (an
and

Y =Y (12)

results previously obtained by Guttmann and Whittington (1978).
Since as n — oo, the mean-square end-to-end distance {R%) = 3", . r2c, (r)/c, ~
n?, we have that

E:r thn+l(f' - 6[))
3131';+3

< Zrrea(r)

Cn

< St (r 4 8) F 1o (r 8t (e + ‘53)]_

=~

(13)

in-{-l
Using 1/9 < r?f(r+ 6,)2 <4, i =0,...3, we obtain

Yo ge (P — )2t (= &)
2’-‘r.‘t1'z+3

< Er 1‘2(_‘“(1‘) < 42!‘-1-51(7' + él)ztn-l-l(r + 61)

= c, = .tn-]-l

+ 421--1-&2(’" + 52)ztn+2(7'+ 52)
tn-{-l

+ 421‘-}-63(’" + 63)21'&-{-3(7‘ + ‘53)

£n+1

(14)
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which implies that v, = v,

The same arguments can be used to prove that the exponents -y, and v, for
dumbbells (6 = 1) are the same as that for saws. However, for the upper bound
of the dumbbell, care is needed to ensure that the edges added to form a loop at
the end vertex of the tadpole do not interfere with the other loop of the tadpole.
No assumptions are required for the leading behaviour (Guttmann and Whittington
1978).

Now we consider twin-tailed tadpoles (b = 2). All arguments and results for
twin-tailed tadpoles can be extended to c twin-tailed tadpoles (b = ¢+ 1) (figure
1(d)) in a straightforward manner. Let s,(r) be the number of n-step twin-tailed
tadpoles with end-to-end distance r. Following the arguments of Gaunt et a/ (1984b),
one can show that

$2(1) K (n —2)c, (1) + ney () + 21, (r) < 2ne (1) + niy(r). as)
From (7), we obtain
5u(7) < 2ncy(r) + neu_y(r + 6y). (16)

and

5= 3 8,(r) <D [2ne, () + ne,_ (r+ &) € 3ne,. an

We define a pattern P by

P={x+e;, ®+2e;, o+2e;+e; 1, z+2e;+2e,; 4,
24e;+2e,y, zte; ez, 2te; g+ 2e, 0,
2 +3eg_q} (18)

(figure 3(a)). P is a finite self-avoiding walk and can occur more than twice in a SAW,
for instance, it occurs three times in the saw W = PPP (figure 3(b)). Therefore,
P is a Kesten pattern. (Note that such a pattern cannot occur in a neighbour avoiding
walk. Thus, we see that u, the connective constant for neighbouring avoiding walks
is less than «, previously conjectured by Gaunt et a/ 1984a). For such a pattern, by
deleting the edges [z + e;, = + 2e,] and [z + 2¢;, = + 2e, + e;_;] and adding
the edges [z + e;, e; +e,_;] and [z + e; + e;_1, 2+ e; + 2e;_4], we convert
it into a finite twin-tailed tadpole (figure 3(c)). If W is an n-step self-avoiding walk
in which the pattern P occurs more than en times for some £ > 0, we have at
least (51") = en ways to select one of them to convert W into an n-step twin-tailed
tadpole. Under such a transformation, the positions of the initial and terminal vertices
are not changed. Therefore, denoting by ¢, (g, >, r) the number of SAWs which have
end-to-end distance » and on which P occurs more than en times, we have

5,(r) 2 (sn}e,(e,>,7) (19)
and

sp = 3 8a(r) 2 (en) Y c,u(e,>,7) = (en)e, (e, >). (20)
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|_ Figure 3. (a) the pattern P given by (18), (b) a walk with

the pattern P occurring three times, {(c) conversion of the
(GJ walk in (b) into a twin-tailed tadpole at one pattern.

From (15), (16), (18) and (19), the mean-square end-to-end distance {RZ2) for
twin-tailed tadpoles satisfies

(M T re(e,> )  Berisa(n) (nErRa) bon(rt bl o

3ne = s, (en)e,(g,>)

n

From theorem 1 and corollary 1, there exists £, > 0 such that

Lim M =1 (22)
n—0a C,
and
0< lim Yerie, (g0, €, 1) < lim nc,(£g, <) -0 @3)
= oo €, = a—o c, )

Therefore, from (19) and (21), we obtain that for sufficiently large n

5, 2 (ggn)e, (24)
which, combining with (16) yields

=7+L (25)

From (23), (24) and that r?/(r 4 §,)® < 4, we obtain that for sufficiently large n,
equation (22) becomes

(egn) 32, r2en(r)

3Inc,

P IRING.

-~
sn.
al2Y, e, (r) + 4,15, (7 + 84)2cu_1(r + &)
(Eﬂn)cn

< (26)
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which implies that the exponent v characterizing the divergence of the mean-square
end-to-end distance {R2), is the same for both self-avoiding walks and twin-tailed
tadpoles.

If the terminal vertex of a twin-tailed tadpole coincides with its initial vertex, a
figure-eight topology is obtained. Let p, and e, be the number of n-step polygons
and figure eights respectively. We have that

1 1
nh__n}n ~ Inp, = “l_u_'té0 - Ine, = «. @7

We also assume the asymptotic forms
D, ~ n&—Zank e, ~ ne-lagne (28)

By applying the pattern theorem and the corollary to polygons on which the pattern
P occurs more than gyn times for some £, > 0, we obtain

> (£g7)Py- (29)
Guttmann and Whittington (1978) have shown that
e, L np,. (30)

These two inequalities yield
€=a, (31)

3.2. Critical exponents in half space

Let sl and s be the number of n-step twin-tailed tadpoles which are confined to
one side of an impenetrable surface x; = 0 and are attached to the surface by the
initial vertex and by both the initial and terminal vertices respectively. The connective
constant for saws is still « in the half space, and the pattern P of figure 2(a) still
occurs in SAWs restricted in this way. The procedure for the bounds can then be
followed without change from the bulk case leading to

lim 1]n.s = lim —1~Ins =K (32)
n—oo I -+ 11
and
n=71+1 =T+ (33)

where ! and 4! are the exponents for the corresponding self-avoiding walks
respectively. Combining equations (24), (25) and (32), we obtain

ntv-2v 4+ =vtr-29+4" =0 (34)
Y-m=r—7 (33)
Y- == (36)

These resuits can also be obtained for tadpoles and dumbbells. Thus, these simple
non-uniform topologies satisfy the scaling forms for uniform networks and support
the conjecture that v(G) — v G) and v(G) — v'(G) are independent of G, the
topology of the network (Duplantier 1989, De'Bell er al 1990, De’Beil and Lookman
1993).
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3.3, The collapse transition

The interaction of polymer networks with an adsorption surface (Zhao and Lookman
1991, Soteros 1992) shows that the adsorption transition is independent of the
topology. However, few results exist on the influence of topology on the collapse
transition, where an interaction energy is assigned to any two vertices in the network
forming a nearest neighbour contact. (An e expansion study is given by Duplantier
1989). More or less trivial results are that tadpoles and dumbbells have the same
collapse transition as do self-avoiding walks, which are obtained directly from the
arguments in subsection 3.1. The same result can also be obtained for twin-tailed
tadpoles as follows:
We define the partition functions

Cola) =3 e, ne™ Spla) =) s, e™® (37

m

where ¢, ,, and s, ,, are the number of n-step self-avoiding walks and twin-tailed
tadpoles with m nearest neighbour contacts respectively and « is the interaction
encrgy between any two vertices forming a nearest neighbour contact.

‘We note that the procedure of Gaunt et o/ (1984b) to convert a twin-tailed tadpole
into a SAW results in only a finite change in the number of nearest neighbour contacts.
Therefore, we obtain for the upper bound

S.(a) <Inf(a)C, (a) (38)

in which the function f(«) is independent of ». On the other hand, by adding a
4-cycle or 5-tadpole at the top vertex of a SAW, we convert the SAW into a twin-tailed
tadpole, which gives

Cn \<.. g(a)Sn+5(a)' (39)

From these two equations, one can conclude that twin-tailed tadpoles have the same
collapse transition as do saws, and

y(e) € v(e) £ v(a) +1. (40)
However, we believe that
V() = y{a) + 1. (41)

Similarly, one can show that the collapse transition for the figure-eight is the same as
for the polygon.

4, Lattice trails

The problem of lattice trails, introduced by Malakis (1975), is an interesting
generalization of the self-avoiding walk. Of interest is the question of whether
trails and saws belong to the same universality class (Guttmann 1985a,b, Lim and
Meirovitch 1989). On the honeycomb and Lavé lattices, which have coordination
number 3, trails consist only of SAws and tadpoles (Guttmann 1985a). We note that
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the method we have used for the tadpoles and dumbbells for v and v also works
for these two lattices. Therefore, we have shown that in addition to + (Guttmanin
1985a), the exponent v for trails is also the same as for sAwWs. Moreover, the collapse
transition induced by the nearest neighbour interaction is also the same as for SAWS.

For lattices with coordination number greater than 3, analogous to lattice c-
animals (Whittington et a! 1983), we consider lattice c-trails (trails with ¢ cycles) as
a model to study the crossover from Saws to trails. Thus, tadpoles and twin-tailed
tadpoles are 1-trails, whereas dumbbells and figure-cights are 2-trails. Let s,(c) be
the number of n-step c-trails. Its lower bound is that for the ¢ twin-tailed tadpoles, for
which the subdominant exponent is -+ ¢. The upper bound is obtained by essentiaily
following the procedure of Gaunt er al (1984b) to decrease successively the degree
of the branch points until they are one or two, which yield s_(c) € (3n)°c,. Thus,
for the c-trails, «v, = v + ¢. Similarly, one can show that », = v and that the scaling
relations (34)—(36) also hold for the c-trails. The same arguments for a lower bound
for e-trails leads to the result that, there exists some e, > 0, such that

£oh

T, —an(c) S sale) 2 Z(e“"’) ¢ = 27c, “2)

e=0 e=0

where T, is the number of n-step trails. This implies that the connective constant
for trails is greater than &, previously shown by Guttmann (1985b) by other means.

5. Summary

By studying specified topologies such as tadpoles, dumbells and twin-tailed tadpoles,
we may conclude that adding a loop to one end of a self-avoiding chain (that may be
part of a network) leaves the exponent v unchanged. If the loop is added at a vertex
of degree two, 4 for the chain or network is increased by one. For polygons, adding
a loop at any vertex increases o — 1 by one. We have also shown that for tadpoles,
dumbells and twin-tailed tadpoles the exponent v and the collapse transition with
nearest neighbour interaction are also the same as sAws. Moreover, we note that the
relations v, —} and «, —~}! for these non-uniform topologies have the same values
as SAWs, a conjecture previously made only for uniform networks.
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