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AbstracL We study a number of non-uniform specified topologies and show rigomusly 
that for certain topologies with cut edges, lhe critical exponent yr k in agreement with 
a conjecture given by Gaunt et al and that the exponent vt = Y ,  lhe aponent for 
self.avoiding walks. We also 6nd that the scaling relations yt - 7: and yt - 7;' are 
the same as for self-avoiding walks, prwiously conjectured only for uniform networks. 
By assigning an interaction energy to a nearest neighbour contact, we prove that lhe 
mllape transition for these topologies is the same as that for self-avoiding walks. 

1. Introduction 

The influence of topology on the critical exponent yt of polymer networks with 
the self-avoiding constraint has been previously investigated (Gaunt et al 1984b, 
Duplantier 1986). The number of configurations, C,, of a network with a specified 
topology is expected to vary asymptotically as enN N-"I, where K is the connective 
constant for self-avoiding walks and N is the total length. The results of scaling 
and renormalization theory for the critical exponent yt (Duplantier 1986, Duplantier 
and Saleur 1986) hold for the uniform or 'pseudo' uniform network for which the 
number of monomers, n in each of the self-avoiding chains is expected to be of 
O(n). For the non-uniform case, in which finite chain lengths are allowed, Gaunt 
et al (1984b) have conjectured the form 7, = 7 + b - 1 for a network with b cut 
edges. (A cut edge of a graph is one which, if deleted, disconnects the graph). The 
conjecture is based on heuristic arguments and bounds and exact enumeration data 
for some simple topologies. In this work, we calculate rigorously critical exponents for 
a number of simple non-uniform networks given in figure 1. For the networks with 
cut edges (figures l (u)- l (d)) ,  we show that the subdominant exponent yt  satisfies 
the conjecture y, = 7 + b - 1. We also consider the exponent U,, characterizing the 
divergence of the mean-square end-to-end distance of a chain within these networks, 
and prove that it is equal to U, the self-avoiding walk exponent. Similar results for the 
subdominant exponents hold for the half space problem if these topologies have their 
initial or both initial and terminal vertices attached to the surface. Consequently, we 
lind that the scaling relations involving the bulk exponents and surface. exponents are 
the same as for SAWS, previously conjectured only for uniform networks (Duplantier 
1989, De'Bell, Lookman and Whittington 1990, De'Bell and Lookman 1993). By 
assigning an interaction energy to a nearest neighbour contact, we prove that the 
collapse transition for these topologies is the Same as that for SAWS. For the figure 
eight network (figure l(e)), we show that the subdominant exponent e is equal to 
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P 
ia1 Ibl is) 

F!gm t Fxamples of simple topologies (a) tadpole, @) 
dumbbell, (c) fwin-tailed tadpole. (d) c Win-tailed tadpole, 
(e) figureeight. 

a, the exponent for polygons and that the collapse transition is the same as that for 
polygons. 

The study of such networks is also related to the problem of lattice trails which 
are random walks on a lattice in which the edges are not allowed to overlap (Mala!& 
1975). Our results show that for trails in the honeycomb and Lav6 lattices, in addition 
to the subdominant exponent y (Guttmann 1985a), the exponent v is also the same 
as that for SAWS. For trails in a hypercubic lattice, we show that for any trail with c 
cycles, which we term a c-trail, yc = y + c and uc = v. These results far c-trails 
are analogues of the results 0, = 0, - c (Sotems and Whittington 1988) and vc = U, 
(Zhao, Wu and Lookman 1992) for bond c-animals, where 0, is the subdominant 
exponent and vc is the exponent for the mean-square radius of gyration for the 
c-animals; 0, and vu are the corresponding exponents for bond trees. 

In section 2 we consider a pattern theorem due to Kesten (1963) and obtain 
a corollary that we will use to investigate the specified topologies in section 3. In 
section 4, we discuss trails and c-trails. All of the models considered are embedded 
in the ddimensional hypercubic lattice in which a vertex is a point in ddimensional 
Euclidean space with integer coordinates z = (+,, ..., xd). The notations el, 
e2,. . . , ed will be used for the unit vectors. 

2. Pattern theorem 

Fbr self-avoiding walks, a paffem P is a prescribed finite step self-avoiding walk and 
is said to occur in a self-avoiding walk W if it is part of W. It is said that P occurs 
r lima in W if P appears at T distinct steps of W, and the vertices of two copies 
of P are disjoint or the terminal vertex of one is the initial vertex of another. P is 
called a fisten puftem if there exists an m-step walk W where P appears more than 
twice in W .  

Theorem I (Kesfen 1963). If P is any Kesten pattern and c,(E, <) is the number of 
n-step self-avoiding walh in which P occurs at most ETZ times, then there exists a 
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positive number E" > 0 such that 

(1) 
1 lim sup-Inc, , (~~,<)  < K 

where K is the connective constant of self-avoiding walks. 

n-m n 

A corollaly which we need from the theorem is given as follows: 

Corolfay I .  Let P be a Kesten pttern. There exists a positive number E,  such 
that if c,(E,, >) is the number of n-step self-avoiding walks in which the pattern P 
appears more than e,n times, then 

proof. For any Kesten pattern P, from the theorem, there exist positive numbers 
e ,  > 0, 6 > 0 and an integer of N ( 6 )  such that for any n > A'(&), we have 

By using (l), we obtain 

Taking limits yields 

This corollaly can also be extended to other problems such as n&ep self-avoiding 
polygons and n-step self-avoiding walks with certain geometrical constraints, provided 
that the connective constant is the same as that for self-avoiding walks. 

3. Critical exponents for simple nehvorks 

3.1. Critical exponents in the bulk 

We first consider tadpoles (b = 1). Let cn(r) and tn(r)  be the number of n-step 
self-avoiding walks and tadpoles respectively with end-to-end distance. P along the 
chain. If an edge incident at the branch point of degree 3 is deleted from the loop 
of a tadpole, we obtain an ( n  - l)-step SAW with end-to-end distance. P + 6, with 
I 6, I< 1. Therefore 

L(r) < C , - l ( T +  6") 0 
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FLgure 2 Cowenion d a self-avoiding walk into a ladpole 
ly adding a 6nite number of edges such as. one edge (a), 

@I (bi IC1 WO edges @) and three edger (c). 

and 

t, d %-I. (8) 
For an upper bound to the number of configurations for a tadpole, we note that at 
most 3 edges are needed to construct a tadpole from a SAW (figure 2). Thus 

%(.) 6 t n t l ( r +  6,) + t,+z(r t 62) + t,+,(r t 63) (9) 

CR 6 3tn+3. (10) 

in which -1 6 J1 6 1, -1 6 SZ 6 2 and -1 4 6, 6 1. Summing over P yields 

From equations (8) and (lo), we have that 

(11) 
1 1 

n-m n m-m n hl - - I n t ,  = hl - h C n  = K 

and 

7t = 7 (12) 
results previously obtained by Guttmann and Whittington (1978). 

nZV, we have that 

E, TZtntl(P - 6") 
3tlat3 

Since as n -* CO, the mean-square end-to-end distance ( R t )  = E, r zc , ( r ) / c ,  - 

E, p2cn(r) 6 

6 

cn 
rz[tn+l(r  4- 61) f tn+z("  6z)tn+3(' &)I 

t n t 1  

Using 1 / 9  6 r z / ( r  + 6i)2 6 4, i = 0,. . .3, we obtain 

Cr-6&T - 6u)2tmtl(r - 6,) 
27tnt3 
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which implies that ut = v. 
The same arguments can be used to prove that the exponents -/t and vi for 

dumbbells (b = 1) are the Same as that for SAWS. However, for the upper bound 
of the dumbbell, care is needed to ensure that the edges added to form a loop at 
the end vertex of the tadpole do not interfere with the other loop of the tadpole. 
No assumptions are required for the leading behaviour (Guttmann and Whittington 
1978). 

Now we consider twin-tailed tadpoles (b = 2). All arguments and results for 
twin-tailed tadpoles can be extended to c twin-tailed tadpoles (b = c + 1) (figure 
l(d)) in a straightforward manner. Let s,(T) be the number of n-step twin-tailed 
tadpoles with end-to-end distance T. Following the arguments of Gaunt et a1 (1984b), 
one can show that 

s,(p) 4 (n- ~ ) c ~ - ~ ( T )  + nc,(r)  + nt , ( r )  < 2nc,(r) + nt , ( r ) .  (15) 

From (7), we obtain 

< 2ncn(7-) + nc,-l(T+ 6"). (16) 

and 

P 

We define a pattern P by 

P = {z + ed, z + Zed, z + 2ed + e d - l ,  z + 2ed + Zed-1, 
z + ed + z + ed + ed-l, z + ed+ 

+ 3ed-l) (18) 

(figure 3(a)). P is a finite self-avoiding walk and can occur more than twice in a SAW, 
for instance, it occurs three times in the SAW W = P P P  (figure 3(b)). Therefore, 
P is a Kesten paltem. (Note that such a pattern cannot occur in a neighbour avoiding 
walk. Thus, we see that 1-1, the connective constant for neighbouring avoiding walh 
is less than n, previously conjectured by Gaunt et al 1984a). For such a pattern, by 
deleting the edge  [z + ed, z + 2ed] and [ z  + 2ed, z + 2e, + ed-J and adding 
the edges [z + e d ,  ed + ed-J  and [z + ed + ed-l, z + ed + 2ed-,], we convert 
it into a finite twin-tailed tadpole (figure 3(c)). If W is an nstep self-avoiding walk 
in which the pattern P occurs more than ~n times for some e > 0, we have at 
least e:) = en ways to select one of them to convert W into an n-step twin-tailed 
tadpole. Under such a transformation, the positions of the initial and terminal verticm 
are not changed. Therefore, denoting by c,(e,  >, T )  the number of SAWS which have 
end-to-end distance T and on which P occurs more than e n  times, we have 

.,(TI 2 ( e n ) c , ( e , > , ~ )  (19) 

and 
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(a) 

E 
m 

Figure 3. (a) the pattern P given by (18), @) a walk with 
the pattern P occurring ullec times. (c) wnversion of the 
walk in @) info a twin-tailed tadpole at one pattern. @) 

From (IS), (16), (18) and (19), the mean-square end-to-end distance (R:) for 
twin-tailed tadpoles satisfies 

From theorem 1 and corollary 1, there exists eu > 0 such that 

and 

Therefore, from (19) and (U), we obtain that for sufficiently large n 

5, 2 (EUn)Cn (24) 

which, combining with (16) yields 

- / * = - / + I .  (25) 

From (23), (24) and that rZ/(r + 6J2 6 4, we obtain that for sufficiently large ?a, 

equation (22) becomes 
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which implies that the exponent v characterizing the divergence of the mean-square 
end-to-end distance (R:),  is the same for both self-avoiding walks and twin-tailed 
tadpoles. 

If the terminal vertex of a twin-tailed tadpole coincides with its initial vertex, a 
figureeight topology is obtained. Let p,, and e,, be the number of n-step polygons 
and figure eights respectively. We have that 

We also assume the asymptotic forms 

e, - nr-lenrc. (28) _ n a - 2  e nh 
Pn 

By applying the patter? theorem and the c?rollary to polygons on which the pattern 
P occurs more than Eon times for same eo > 0, we obtain 

en 2 (Eb)Pn .  
Guttmann and Whittington (1978) have shown that 

e,, < np , .  

These two inequalities yield 

€ = ff. (31) 

3.2. Critical exponents in half space 
Let s: and s: be the number of nstep twin-tailed tadpoles which are confined to 
one side of an impenetrable surface xl = 0 and are attached to the surface by the 
initial vertex and by both the initial and terminal vertices respectively. The connective 
constant for SAWS is still n in the half space, and the pattern P of figure 2(a) still 
occurs in SAWS restricted in this way. The procedure for the bounds can then be 
followed without change from the bulk case leading to 

and 

y: = y' t 1 

yr t v -2y: t y:' = y + v - 2 y '  t yl' = 0 

Yt - Y: = Y - Y 

Y ~ - Y ; ' = Y - Y  . 

7:' = Y" t 1 (33) 
where y1 and y" are the exponents for the corresponding self-avoiding walks 
respectively. Combining equations (24), (25) and (32), we obtain 

(34) 

(35) 

(36) 

1 

11 

These results can also be obtained for tadpoles and dumbbells. Thus, these simple 
non-uniform topologies satisfy the scaling forms for uniform networks and support 
the conjecture that y(G) - yl(G) and y(G) - y'l(G) are independent of G, the 
topology of the network (Duplantier 1989, De'Bell et a1 1990, De'Bell and Lookman 
1993). 
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3.3. nie collapse transition 

The interaction of polymer networks with an adsorption surface (Zhao and Lookman 
1991, Soteros 1992) shows that the adsorption transition is independent of the 
topology. However, few results exist on the influence of topology on the collapse 
transition, where an interaction energy is assigned to any two vertices in the network 
forming a nearest neighbour contact (An e expansion study is given by Duplantier 
1989). More or less trivial results are that tadpoles and dumbbells have the same 
collapse transition as do self-avoiding walks, which are obtained directly from the 
arguments in subsection 3.1. The same result can also be obtained for Win-tailed 
tadpoles as follows: 

Dongming Zhao and T L w h a n  

We define the partition functions 

where cn,m and sn+ are the number of nstep self-avoiding walks and twin-tailed 
tadpoles with m nearest neighbour mntacts respectively and a is the interaction 
energy between any two vertices forming a nearest neighbour contact. 

We note that the procedure of Gaunt et a1 (1984b) to convert a twin-tailed tadpole 
into a SAW results in only a finite change in the number of nearest neighbour contacts. 
Therefore, we obtain for the upper bound 

S,(a) < 3nf(a)Cn(a)  (38) 

in which the function f(a) is independent of n. On the other hand, by adding a 
4-cycle or 5-tadpole at the top vertex of a SAW, we convert the SAW into a twin-tailed 
tadpole, which gives 

c, < da)S,+da).  (39) 

From these two equations, one can conclude that twin-tailed tadpoles have the same 
collapse transition as do SAWs, and 

-/(a) < -/<(a) < - / (a )  + 1. (40) 

However, we believe that 

= - / (a)  + 1. (41) 

Similarly, one can show that the collapse transition for the figure-eight is the same as 
for the polygon. 

4. Lsttice trails 

The problem of lattice trails, introduced by Malakis (1975), is an interesting 
generalization of the self-avoiding walk. Of interest is the question of whether 
trails and SAWs belong to the same universality class (Guttmann 1985a,b, Lim and 
Meirovitch 1989). On the honeycomb and Lav6 lattices, which have coordination 
number 3, trails consist only of SAWS and tadpoles (Guttmann 1985a). We note that 
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the method we have used for the tadpoles and dumbbells for y and v also works 
for these two lattices. Therefore, we have shown that in addition to y (Guttmann 
1985a), the exponent v for trails is also the same as for SAWS. Moreover, the collapse 
transition induced by the nearest neighbour interaction is also the same as for SAWS. 

For lattices with coordination number greater than 3, analogous to lattice c- 
animals (Whittington et af 1983), we consider lattice c-trails (trails with c cycles) as 
a model to study the crossover from SAWS to trails. Thus, tadpoles and twin-tailed 
tadpoles are 1-trails, whereas dumbbells and figureeights are 2-trails. Let s,(c) be 
the number of n-step c-trails. Its lower bound is that for the c twin-tailed tadpoles, for 
which the subdominant exponent is y f c. The upper bound is obtained by essentially 
following the procedure of Gaunt et af (1984b) to decrease successively the degree 
of the branch points until they are one or two, which yield s,(c) < (3n)=c,. Thus, 
for the c-trails, y, = y + c. Similarly, one can show that v, = v and that the scaling 
relations (34)-(36) also hold for the c-trails. The same arguments for a lower bound 
for c-trails leads to the result that, there exists some E" > 0, such that 

where T, is the number of n-step trails. This implies that the connective constant 
for trails is greater than IC, previously shown by Guttmann (1985b) by other means. 

5. Summar) 

By studying specified topologies such as tadpoles, dumbells and twin-tailed tadpoles, 
we may conclude that adding a loop to one end of a self-avoiding chain (that may be 
part of a network) leaves the exponent y unchanged. If the loop is added at a vertex 
of degree two, y for the chain or network is increased by one. Fbr polygons, adding 
a loop at any vertex increases 01 - 1 by one. We have also shown that for tadpoles, 
dumbells and twin-tailed tadpoles the exponent v and the collapse transition with 
nearest neighbour interaction are also the same as SAW. Moreover, we note that the 
relations yt  - 7: and yt - y:' for these non-uniform topologies have the Same values 
as SAWS, a conjecture previously made only for uniform networks. 
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